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Abstract

In this project, we propose ReMov3r, an end-to-end architecture for dense 3D scene reconstruction from monoc-
ular RGB video with known camera intrinsics. Our method integrates three key innovations: explicit multi-modal
feature fusion using cross-attention between derived geometric and visual features, a hierarchical state representation
that separates local temporal coherence from global spatial consistency, and a confidence-aware depth refinement
process. By leveraging pretrained depth and image encoders, ReMov3r generates semantically-conditioned feature
embeddings and refines depth estimates for accurate pointmap prediction. An adaptive keyframe selection strategy
ensures computational efficiency while maintaining reconstruction quality. Experiments show that ReMov3r delivers
robust, scalable, and accurate 3D reconstruction performance on par with existing methods. We believe that with
future work—particularly scaling up training and incorporating improved loss functions—ReMov3r has the potential
to surpass state-of-the-art approaches.

1 Introduction

3D scene reconstruction from monocular RGB input represents a fundamental challenge in computer vision with
applications spanning robotics, augmented reality, and autonomous navigation. Despite significant progress in this
domain, existing methods face persistent challenges in maintaining spatio-temporal consistency, handling geometric
ambiguities, and achieving real-time performance without sacrificing reconstruction quality. These challenges become
particularly acute when working with uncalibrated cameras, dynamic scenes, or extended video sequences where
traditional optimization-heavy approaches may fail or become computationally prohibitive.

Recent transformer-based architectures have demonstrated promising results in dense monocular 3D reconstruction.
DUSt3R[ 1] introduced a unified framework for regressing dense per-pixel 3D pointmaps from RGB images without re-
quiring camera intrinsics at inference time. However, it lacks temporal modeling capabilities and generates pointmaps
in local coordinate systems that require costly post-processing alignment. CUT3R[2] extended this work by introduc-
ing a state-recurrent transformer architecture for continuous 3D perception, maintaining a persistent latent state for
online prediction of dense pointmaps and camera parameters in a shared world coordinate system. While effective,
these approaches still struggle with balancing computational efficiency and reconstruction accuracy, particularly in
unconstrained real-world settings.

Alternative approaches have explored different extensions to address these limitations. Align3R[3] explicitly incor-
porates monocular depth priors to enhance geometric reasoning, but requires significant computational overhead for
global optimization. SLAM3R[4] prioritizes real-time, calibration-free reconstruction through a two-tier pipeline with
Image-to-Points and Local-to-World modules, offering improved efficiency but with potential trade-offs in reconstruc-
tion detail. Other specialized extensions like MASt3R[5], MonST3R[6], and Spann3R[7] have contributed specific
innovations but lack comprehensive system-level integration across the efficiency-quality spectrum.

We propose ReMov3r, a novel approach that synergistically combines three key innovations to address these chal-
lenges. First, we introduce explicit multi-modal feature fusion that combines geometric and visual features through
cross-attention, creating Semantically-conditioned Feature (SCF) embeddings that capture both spatial relationships
and semantic context. Second, our hierarchical state representation separates local temporal coherence from global
spatial consistency, enabling efficient tracking of camera motion and scene structure across varying temporal scales.
Third, we implement a confidence-aware depth refinement process that optimizes initial depth predictions through
learned error correction, enhancing the accuracy of geometric reconstructions even in challenging scenarios.



ReMov3r distinguishes itself from prior work through its comprehensive approach to spatio-temporal consistency. Our
adaptive keyframe selection strategy balances reconstruction accuracy with computational efficiency, while the dual-
level state representation enables both short-term coherence between consecutive frames and long-term consistency
across the entire sequence. By incorporating pretrained monocular depth estimation models like Depth Anything
v2[8]and visual feature extractors such as DINOv2[9], our architecture leverages powerful foundation models while
addressing their inherent limitations through our refinement pipeline.

2 Related Work

The task of dense monocular 3D reconstruction has evolved significantly through the development of transformer-
based architectures that regress dense geometry without explicit depth sensors or multi-view calibration. A foun-
dational model in this direction is DUSt3R [1], which introduced a unified framework for monocular and binocular
reconstruction by regressing dense per-pixel 3D pointmaps in a learned coordinate frame. Using a Vision Transformer
(ViT) [10] encoder and a transformer decoder, DUSt3R learns 2D-3D correspondences from RGB images without
requiring camera intrinsics at inference. It supports downstream recovery of camera parameters via optimization over
predicted geometry. However, DUSt3R is limited to static scenes and generates pointmaps in local coordinate systems,
which must be globally aligned through a costly post-processing step. It also lacks temporal modeling or memory,
which restricts its scalability in long-term or video-based settings.

To address these limitations, several extensions have emerged. CUT3R [2] builds on DUSt3R by introducing a state-
recurrent transformer architecture designed for continuous 3D perception. It maintains a persistent latent state that
encodes the evolving scene as new frames arrive. Each incoming image both updates and queries this state via dual
transformer decoders, enabling online prediction of dense pointmaps and camera parameters in a shared world coor-
dinate system. CUT3R supports both dense reconstruction and scene completion: by querying the state with virtual
raymaps, it can infer unobserved or occluded geometry, making it particularly effective for handling dynamic or
partially observed scenes. Unlike optimization-heavy methods like DUSt3R and Align3R [3], CUT3R is fully feed-
forward and online, achieving real-time performance without requiring camera intrinsics or post-hoc alignment.

Align3R takes a complementary path by explicitly injecting monocular depth priors into DUSt3R’s geometric reason-
ing pipeline. It uses pretrained monocular depth estimators (such as Depth Anything V2 [&]) to generate per-frame
depth maps, which are unprojected into 3D pointmaps and encoded using a dedicated ViT. These encoded features are
fused into DUSt3R’s decoder via zero convolutions, preserving model stability while enhancing geometric accuracy.
This conditioning resolves ambiguities in textureless or occluded regions and anchors DUSt3R’s predictions at metric
scale. Align3R is particularly effective for dynamic scenes, where depth priors help stabilize frame-to-frame variation.
After prediction, a global optimization step refines depth and camera pose estimates across frames. Though accurate,
this step incurs significant computational overhead and limits real-time viability.

SLAMB3R [4] addresses this challenge directly by prioritizing real-time, calibration-free 3D scene reconstruction. It in-
troduces a novel two-tier pipeline consisting of an Image-to-Points (I2P) module and a Local-to-World (L2W) module.
The I2P module processes sliding windows of RGB frames to regress dense 3D pointmaps in a local frame, selecting
a keyframe (typically the middle frame) to serve as a reference coordinate system. Using a multi-branch ViT-based
encoder-decoder architecture, SLAM3R encodes each frame independently and fuses features via cross-attention and
aggregation layers, enabling dense multi-view reasoning without solving for camera poses.

The L2W module then incrementally registers these local reconstructions into a shared global scene model. Unlike
traditional SLAM [11] or learned-SLAM [12] or SfM [13] [14] methods, SLAM3R does not recover or optimize for
extrinsic transformations. Instead, it maintains a reservoir of previously reconstructed “scene frames”, from which
it retrieves the top-K most relevant keyframes using a learned similarity metric. Both appearance and geometry are
embedded into the retrieval process using ViT-encoded tokens and patch embeddings. The new keyframe’s features are
aligned against retrieved scene frames via transformer-based decoding, and its pointmap is fused into the global point
cloud through deformation and confidence-weighted integration. This alignment process is entirely feed-forward and



does not rely on rigid-body assumptions, making SLAM3R highly robust to drift while maintaining 20+ FPS through-
put.

By avoiding camera parameter estimation and relying solely on learned visual-geometric correspondences, SLAM3R
is uniquely suited for robotics, augmented reality, and any scenario where calibration data is unavailable or dynamic
scenes are common. Its fully end-to-end, optimization-free architecture makes it significantly faster than methods like
Align3R and more scalable than memory-heavy models like Spann3R [7].

Other works in the 3R family contribute specific innovations but do not offer the same level of system-level integration.
MASt3R [5] improves matching precision via a Dense Feature Head, Fast Reciprocal Matching, and coarse-to-fine
refinement, enabling high-resolution reconstructions and improved robustness. MonST3R [6] adapts DUSt3R to dy-
namic scenes by regressing global pointmaps per timestep, handling motion without explicit priors. Spann3R, similar
to CUT3R, introduces a spatial memory and a geometry-aware attention mechanism to maintain scene consistency
in online settings. While these methods offer valuable insights, SLAM3R distinguishes itself by offering the best
trade-off between efficiency, scalability, and reconstruction quality in calibration-free real-time environments.

3 Methodology
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Figure 1: ReMov3r fuses depth and image features from monocular RGB video via cross-attention to form semantically-
conditioned embeddings, refines depth and pointmaps with confidence prediction, and maintains hierarchical local and global
states for efficient, consistent 3D reconstruction using adaptive keyframe selection and pose estimation.

‘We propose an end-to-end architecture for 3D scene reconstruction from monocular RGB video sequences with known
camera intrinsics, featuring three key ideas: (i) Explicit Multi-modal Feature Fusion, (ii) Hierarchical State Represen-
tation for efficient and effective spatio-temporal consistency and (iii) Refining Depth Estimation using a confidence-
aware refinement process.

3.1 Model Architecture

Our method, illustrated in fig. 1, is built on three interconnected components: (1) early fusion of geometric and visual
features via cross-attention to produce Semantically-Conditioned Feature (SCF) embeddings, (2) a hierarchical state
representation that disentangles local temporal coherence from global spatial consistency, and (3) a confidence-aware
depth refinement module that enhances initial depth estimates through learned error correction. These elements work
together to enable accurate and efficient 3D reconstruction, supported by adaptive keyframe selection and a hierarchical
attention framework.

3.1.1 Explicit Multimodal Feature Fusion

Geometric initialization employs a pretrained monocular depth prediction model Depth Anything v2[8] to generate
frame-wise pointmaps through unprojection of depth estimates into 3D space. The pointmaps are processed using
a ViT-based[10] depth encoder module to create depth features. Simultaneously, the visual stream extracts global
image-level features using DINOvV2[9]. The fusion occurs at the point cloud level through cross-attention such that
3D pointmaps are cross-attended by their corresponding visual features. We call these contexualized pointmaps as
Semantically-Conditioned Feature (SCF) embeddings that capture both geometric relationships and semantic context,
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Figure 2: Memory Module with hierarchical state representation

enabling the model to learn spatial relationships conditioned on visual semantics. For global pose estimation we also
add a pose token corresponding to each frame to fusion block to create pose embedding. This token is self-attended
by depth features and cross-attended by visual features, capturing the overall semantics of the frame.

3.1.2 Refining Depth Estimation

While leveraging existing depth prediction models for initialization, our architecture uses a refinement stage to address
inherent monocular depth estimation inaccuracies. The SCF embeddings serve as input to a regression network that
predicts both refined depthmaps and pointmaps, as well as per-point confidence scores associated with both of them.
The refinement process employs confidence-aligned loss for depth and pointmap. We create groundtruth pointmaps by
unprojecting groundtruth depth using camera intrinsics. This optimization encourages the network to produce accurate
depth estimates while automatically learning which predictions require higher confidence weighting.

3.1.3 Hierarchical State Representation Learning:

The Hierarchical state representation handles spatio-temporal consistency at different scales, as shown in Fig. 2.

I. Adaptive Keyframe Strategy: Keyframe selection employs a divergence metric based on cosine similarity between
pose embeddings of the current frame (I) and the keyframe (K). A new keyframe is created when the metric exceeds
a given threshold, balancing reconstruction accuracy with computational efficiency. This adaptive approach prevents
information redundancy while maintaining sufficient overlap for reliable pose estimation.

I1. Local State (L): Tracking short-term temporal coherence within a window between consecutive keyframes, L
employs causal self-attention followed by an MLP for state management. The readout head computes camera trans-
formations (R, tX) from current frame I to keyframe K. This formulation allows for continuous adaptation to scene
changes while maintaining local consistency. During training, for batch computation of attention on the entire se-
quence across all windows we pad frames in each window to a constant maximum window length.

I11. Global State (G): Providing long-term spatial consistency across the entire sequence, G operates at keyframe
granularity. When a new keyframe (/%) is selected, global readout computes the transformation (ng*, tg*) from the
new keyframe’s camera coordinate frame (/4 *) to the initial frame’s camera coordinate frame (W) through causal self-
attention between pose embedding of GG and all keys frames upto K. This updates uses the global state embedding
to ensure progressive integration of local observations into the global context. For parallel computation we pad all the
scenes to a maximum length, and during inference as new keyframe comes in, the padding is updated with the latest
keyframe.

In summary, our approach sits conceptually between the memory-driven design of CUT3R and the feed-forward,



windowed architecture of SLAM3R. CUT3R maintains a persistent global memory throughout the entire sequence,
updating a scene representation incrementally with each frame. While this enables continuous state tracking, it also
causes feature dilution over time—early-frame information is gradually averaged out, degrading geometric detail and
limiting responsiveness to scene changes. In contrast, SLAM3R avoids any persistent memory and instead processes
short sliding-window clips, selecting keyframes and predicting dense 3D pointmaps via direct correspondence without
estimating camera poses. Although efficient, this design lacks structural constraints and limits cross-window consis-
tency.

3.2 Training Objective

3D Confidence-aligned Regression Loss: Following Cut3r, we apply confidence-aware pointmap and depth predic-
tion loss since we are predicting pointmaps in the frame local to each camera and predicting a Rotation and Translation
to the target (initial) camera frame. The groundtruth pointmaps are computed by unprojecting depth using camera in-

trinsics.
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where § and s are scale normalization factors for X and x, respectively. Similar to Cut3r, when the ground-truth
pointmaps are metric, we set § := s to enable the model to learn metric-scale pointmaps.

Pose Regression Loss: We parameterize the pose P, as quaternion @ for rotation and translation 7, and minimize
the L2 norm between the prediction and ground truth.
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4 Experiments

4.1 Training Data

Given the broad evaluation scope of CUT3R—trained on a diverse mix of synthetic and real-world datasets spanning
object-centric, scene-level, dynamic, and static settings—our goal was to adopt a more focused and computationally
feasible dataset selection. While CUT3R demonstrates zero-shot generalization on varied benchmarks such as MPI
Sintel [15], Bonn [16], and KITTI [17], training across such heterogeneous datasets is resource-intensive and imprac-
tical within the scope of this project. Consequently, we selected ScanNetV2 and 7-Scenes as our primary datasets due
to their complementary characteristics and suitability for our method’s evaluation.

The ScanNet dataset [ 8] is a large-scale collection of RGB-D video sequences captured across 1,513 diverse indoor
environments, including offices, apartments, and public spaces. Each sequence in ScanNet is accompanied by accurate
camera pose annotations, dense surface reconstructions in the form of mesh models, and instance-level semantic
segmentations. The dataset contains over 2.5 million RGB-D frames, making it one of the most comprehensive
resources for learning-based 3D scene understanding. The scale and diversity of ScanNet enable models to learn
robust scene priors, such as common object shapes and spatial layouts, which are critical for generalization to unseen
environments.

In contrast, the 7-Scenes dataset [ 1 9] consists of RGB-D video sequences recorded in seven small indoor environments,
such as offices and meeting rooms, using a Kinect sensor. Each frame is annotated with a high-precision camera pose
estimated via KinectFusion, alongside dense 3D models of the scenes. While the scale of 7-Scenes is significantly
smaller than ScanNet, its precise pose annotations and controlled environment make it a standard benchmark for
evaluating camera relocalization, tracking, and temporal consistency in 3D reconstruction systems. The dataset is
particularly valuable for assessing the real-time performance and robustness of monocular reconstruction methods, as
it provides challenging sequences with significant viewpoint variation and occlusions.

Together, ScanNet and 7-Scenes offer complementary strengths for the development and evaluation of monocular
video to 3D reconstruction approaches. ScanNet is primarily used for training due to its large-scale, richly annotated



data, enabling supervised learning of detailed 3D representations. 7-Scenes, on the other hand, is typically employed
for benchmarking and cross-dataset generalization tests, providing rigorous evaluation of pose accuracy and recon-
struction quality in real-world scenarios. The combination of these datasets allows for the development of models that
are both accurate in 3D geometry prediction and robust under diverse deployment conditions.

4.2 Training Details

For training our model, we utilized a distributed setup comprising 8 NVIDIA A100 GPUs (each with 40GB VRAM)
and implemented PyTorch’s DistributedDataParallel framework to ensure efficient parallelization and op-
timal resource utilization. The training pipeline incorporated pretrained DINOv2 (Vision Transformer, ViT-L/14)
features for semantic understanding and depth embeddings derived from Align3r’s pretrained depth encoder for ge-
ometric consistency. All backbone layers except the final two were frozen. Our training approach encompassed the
entire pipeline shown in the fig. 1, including the monocular depth estimation, concept fusion, self-attention mecha-
nism, decoder for point map, depth and confidence prediction, and both local and global state components for pose
prediction. During training, batches were sampled as contiguous sequences to preserve temporal and spatial coher-
ence, for estimating the camera pose in sequential manner. Each batch was structured as a tensor of shape [batch
size, sequence length, ...],wherethesequence length corresponds to consecutive frames from the same
scene. This design enables the network to exploit geometric consistency and temporal relationships across multiple
views, which is crucial for accurate 3D scene understanding and reconstruction.

Table 1: Training Hyperparameters

Parameter Value

Batch Size 8 per GPU (64 global)
Sequence Length 16

Image size 224 x 224

Learning Rate le-4 with exponential decay
Learning Rate Schedule | Exponential decay (7 = 0.995)
Gradient Clipping 5.0 max norm

Weight Decay 0.01

Optimizer AdamW

Training Duration 1000 epochs

Precision Mixed precision (fp16/fp32)

4.3 Metrics
4.4 Depth Metrics

For depth evaluation, we adopt established metrics to assess accuracy and temporal consistency. The primary metrics
include:
¢ Absolute Relative Error (AbsRel) |: Measures proportional deviation between predicted and true depth values,
1 N |di—d,
calculated as 5 >, ldil
* Threshold Accuracy (6 < 1.25) 1: Percentage of pixels where predicted-to-groundtruth depth ratio falls within
125% threshold.

4.5 Pose Metrics

For pose estimation evaluation, we utilize three well-established metrics:

¢ Absolute Translation Error (ATE) |: Euclidean distance between estimated and groundtruth trajectories after
SE(3) alignment.

* Relative Translation Error (RTE) |: Average positional discrepancy over consecutive pose pairs.



* Relative Rotation Error (RRE) |: Angular difference in rotation components between adjacent poses.

This metric selection enables comprehensive assessment of both absolute trajectory accuracy and local pose consis-
tency, with arrow notations (} / 1) indicating whether lower or higher values represent better performance

4.6 Results

The evaluation of our method was conducted on the test sets of the ScanNet and 7Scenes datasets. For both datasets,
the data was partitioned such that 80% was used for training and the remaining 20% was reserved for evaluation.

4.6.1 Quantitative

Table 2: Quantitative comparison of depth estimation performance on the test set of ScanNet and 7Scenes datasets. We report the
depth accuracy under metric scale alignment using Absolute Relative Error (Abs Rel) and the percentage of predicted depths within
a threshold (§ < 1.25). Lower is better for error metrics; higher is better for § < 1.25

Alignment  Method Scannet 7scenes
AbsRel | 6<1.251 AbsRel] 4<1.257
Cut3r [2] 0.351 48.59 0.111 87.03
Metric Scale  Slam3r [4] 0.148 85.82 0.067 91.34
Ours 0.169 74.55 0.164 75.35

Table 3: Quantitative comparison of pose estimation performance on the ScanNet and 7Scenes datasets. We report the trajectory
estimation metrics: Absolute Trajectory Error (ATE), Relative Trajectory Error (RTE), and Relative Rotation Error (RRE). Lower
is better for error metrics.

Method Scannet 7scenes
ATE] RTE] RRE] ATE] RTE| RRE]

Cut3r [2] 0.099 0.022 0.600 0.568 0.024 0.882
Slam3r [4] 0.066  0.014 0.515 0.084 0.012 0.764
Ours 0.049 0.011 1359 0.039 0.009 1.612

Depth Estimation Discussion The results in the Tab 2 demonstrate that Slam3r achieves the best overall depth
estimation performance across both datasets. On ScanNet, Slam3r obtains the lowest Absolute Relative Error (Abs
Rel) of 0.148 and the highest percentage of predicted depths within the § < 1.25 threshold at 85.82%. This trend
continues on the 7Scenes dataset, where Slam3r again outperforms the other methods with an Abs Rel of 0.067 and a
0 < 1.25 accuracy of 91.34%. In comparison, the “Ours” method shows a notable improvement over Cut3r, achieving
a lower Abs Rel and higher § < 1.25 on ScanNet (0.169 and 74.55%, respectively), but it lags behind Slam3r. On
7Scenes, “Ours” records an Abs Rel of 0.164 and § < 1.25 of 75.35%, which, while competitive, is still inferior to
Slam3r’s results. Cut3r consistently yields the highest error and lowest accuracy among the three methods.

Pose Estimation Discussion Tab 3 presents the trajectory estimation results. Here, the “Ours” method demon-
strates superior performance in terms of Absolute Trajectory Error (ATE) and Relative Trajectory Error (RTE) on both
datasets. Specifically, on ScanNet, “Ours” achieves the lowest ATE (0.049) and RTE (0.011), indicating the most
accurate overall and relative trajectory estimation. On 7Scenes, “Ours” also secures the best results for ATE (0.039)
and RTE (0.009). However, in terms of Relative Rotation Error (RRE), Slam3r performs best, with RRE values of
0.515 on ScanNet and 0.764 on 7Scenes, while “Ours” records higher RREs of 1.359 and 1.612, respectively. Cut3r
performs worst across all pose estimation metrics.

Analysis The experimental evaluation of the three SLAM approaches-Cut3R, SLAM3R, and our proposed method-
demonstrates clear performance distinctions attributable to their underlying architectural designs. Cut3R, which uti-
lizes a single shared state embedding vector for both depth and pose estimation, exhibits the highest errors in both



depth and pose. This degradation is primarily due to the accumulation of errors in the state representation, particularly
in complex or extended sequences. SLAM3R addresses some of these limitations through a hierarchical state memory
architecture that integrates local frame-to-frame registration with global keyframe optimization. This design leads to
notable reductions in both depth error and relative rotation error (RRE), indicating enhanced robustness and improved
overall performance compared to Cut3R. Our proposed method further advances trajectory estimation accuracy by
employing an attention-based Local-Global state representation combined with adaptive keyframe selection. This ap-
proach achieves superior results in absolute trajectory error (ATE) and relative trajectory error (RTE), reflecting more
precise trajectory reconstruction. However, depth consistency and relative rotation error (RRE) remains less optimal.
The primary factors contributing to this limitation include (i) restricted training epochs due to GPU and dataset con-
straints, (ii) the absence of a frame-wise pose smoothness loss during training, and (iii) the lack of a separate scale-shift
prediction module rather than direct metric depth regression. Overall, these results underscore the inherent trade-offs
between trajectory accuracy and depth fidelity in learned monocular SLAM systems for 3D reconstruction. While
architectural innovations such as hierarchical memory and attention-based state representations can substantially im-
prove trajectory estimation, achieving high-fidelity depth reconstruction remains challenging under current training
and modeling constraints. In terms of computational cost, our approach leverages a single pose CLS token to repre-
sent the Local-Global state, resulting in significantly lower resource requirements. In contrast, SLAM3R’s 12P and
L2W modules incur much higher computational costs due to their dense pointmap prediction and fusion strategies.

4.6.2 Qualitative

We visualize our predicted depth maps and corresponding point clouds for test scenes from the ScanNet (Fig. 3) and 7-
Scenes (Fig. 4) datasets. These qualitative results align with our quantitative evaluations: ReMov3r produces geomet-
rically consistent and semantically meaningful reconstructions across a range of environments. Compared to CUT3r,
our outputs exhibit fewer artifacts and more reliable surface estimations, particularly in areas with challenging geom-
etry or sparse textures. While SLAM3r produces sharper reconstructions in static, well-structured scenes—benefiting
from strong geometric priors—ReMov3r shows greater robustness in cluttered environments.

We note that our current visual performance is partially limited by training constraints: specifically, the absence of
infinite value masking in the training data and the use of a suboptimal smoothing loss. We believe that with scaled
training and the integration of these improvements, ReMov3r can not only close the remaining visual quality gap with
SLAM3r but also surpass it in both robustness and generalization.

5 Limitations

Several limitations in our current approach constrain its overall performance and generalizability. First, the number of
training epochs is restricted by available GPU resources and dataset size, which limits the model’s capacity to fully
learn complex scene representations. Second, the absence of a frame-wise pose smoothness loss during training means
that the model is not explicitly penalized for abrupt changes in camera pose between consecutive frames, potentially
resulting in jerky motion and suboptimal rotation estimates. Third, the method directly regresses metric depth without
a dedicated scale-shift prediction module, which can hinder the accuracy of depth reconstruction. Additionally, the
current implementation does not mask depth and pointmap losses for pixels where ground-truth depth is undefined,
making the model susceptible to noisy or incomplete sensor data. Finally, evaluation has been primarily conducted
on indoor, relatively static environments, limiting the demonstrated generalizability of the approach to more complex
real-world scenarios, such as dynamic scenes or outdoor environments with varying lighting and larger spatial scales.

6 Future Work

To address the aforementioned limitations, several avenues for future research are proposed. Inspired by Monst3r [6],
we plan to introduce a loss function that penalizes significant variations in camera rotation and translation between
consecutive timesteps, thereby encouraging smoother camera motion and improving rotation estimation. We also
intend to incorporate masking strategies for depth and pointmap losses to exclude pixels with undefined ground-
truth depth, which should enhance robustness to noisy sensor data. To improve generalizability, we aim to extend
training and evaluation to more diverse datasets that include dynamic scenes (e.g., TUM RGB-D dynamic subset,



VirtualKITTI [20] with moving objects) and outdoor environments (e.g., KITTI Raw [17], Waymo Open [2 1], Oxford
RobotCar [22] [23]). This will allow us to assess the model’s robustness to challenges such as motion blur, dynamic
occlusions, changing lighting conditions, and increased scene depth. Furthermore, we will explore explicit modeling of
scene dynamics or introduce motion segmentation to decouple moving foreground objects from the static background
during training. Data augmentation strategies simulating outdoor conditions and dynamic movements, as well as
reassessment of network architecture and loss terms (e.g., photometric consistency, depth smoothness), will also be
investigated. Broadening the training set and refining the modeling approach in these ways are expected to enhance
both the robustness and scalability of the system, facilitating its application to a wider range of real-world scenarios,
including autonomous driving, augmented reality, and mobile robotics.



Figure 3: Visualization of groundtruth and our results for depth and pointmap of ScanNet dataset. Rows first to fourth correspond
to RGB images, groundtruth depth, estimated depth and estimated pointmap respectively.
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Figure 4: Visualization of groundtruth and our results for depth and pointmap of 7-Scenes dataset. Rows first to fourth correspond
to RGB images, groundtruth depth, estimated depth and estimated pointmap respectively.



Figure 5: Visualization of groundtruth and Cut3R results for depth and pointmap of ScanNet dataset. Rows first to fourth corre-
spond to RGB images, groundtruth depth, estimated depth and estimated pointmap respectively.



Figure 6: Visualization of groundtruth and Cut3R results for depth and pointmap of 7-Scenes dataset. Rows first to fourth corre-
spond to RGB images, groundtruth depth, estimated depth and estimated pointmap respectively.



Figure 7: Visualization of groundtruth and SLAMM3R results for depth and pointmap of ScanNet dataset. Rows first to fourth
correspond to RGB images, groundtruth depth, estimated depth and estimated pointmap respectively.



Figure 8: Visualization of groundtruth and SLAMMS3R results for depth and pointmap of 7-Scenes dataset. Rows first to fourth
correspond to RGB images, groundtruth depth, estimated depth and estimated pointmap respectively.
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